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Abstract: Analysis of long-term hydrometeorological data in the Alps shows an increasing number of 
rainfall and flood related natural hazards. Beside decreasing return periods of high-flow events, the 
intensity of hydro-meteorological disasters has been increasing. Weather risks of this type may result in 
higher material and economic losses, thus prevention and protection from floods becomes a major 
challenge, where forecasting has an indisputable role. A great number of hydrological models are now 
available with a wide range of data requirement and usability. The aim of this paper is to verify the 
applicability of the MIKE 11 rainfall-runoff model on the watershed of Lake Mondsee, a small Alpine 
catchment located in Salzkammergut, Austria. The NAM (Nedbør-Afstrømnings-Model) is a lumped and 
conceptual model with an autocalibration algorithm providing a timesaving option for the adjustment of 
the great number of free variables included in the system. The simulated runoff and long-term 
accumulated runoff results of the modelling achieved a variance above 86% with a proper model 
structure, matching the characteristics of the studied watershed, and a set of parameters provided by a 
systematic calibration-validation process focusing step-by-step on low flow, high flow parts of the runoff 
and on the overall RMSE. The model proved to be applicable to the Mondsee catchment and is expected 
to work in similar catchments as well, and could serve as a useful tool for runoff estimation on 
unmonitored catchments. 
 
 
Keywords: Hydrology; Northern Alps; conceptual modelling; Mondsee; rainfall-runoff 
 
 
1 INTRODUCTION 
 
Analysis of long-term hydro-meteorological 

data shows the increasing number of rainfall and 
flood related natural hazards (Alfieri et al., 2015, 
Arnell 1999, JACOB et al., 2008, Stagl & Hattermann 
2015). Besides decreasing return frequencies of 
high-flow events, the intensity of weather-related 
hazards has also been increasing (Anderson et al., 
2008, Beniston et al., 2007, Stagl & Hattermann 
2015). This results in high economic losses; thus, 
prevention and protection from floods have become 
a major challenge, where forecasting plays an 
indispensable role (Alcamo et al., 2007). Forecasting 
of floods refers to the thorough understanding of 
catchment-scale hydrologic processes and its 

behaviour under extreme meteorological and 
hydrologic circumstances. On a monitored 
catchment where a long-term record of water level, 
discharge, precipitation, temperature, 
evapotranspiration data is available, in addition to 
ground water table elevation and water management 
data (such as manipulation of hydraulic structures, 
pumps, known and monitored extractions), 
modelling is based on the processing of these data. 
However, modelling and forecasting on an 
unmonitored catchment is much more challenging 
(Blöschl 2005). Focusing on small watersheds and 
flash floods, many studies indicate that this type of 
inundation hazards have been becoming more and 
more frequent in Hungary and Eastern-Central 
Europe (Fábián et al., 2009, Torma et al., 2014, 
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Lóczy 2010; Czigány et al., 2010, Czigány et al., 
2013), however the numerical simulation of these 
events especially on small Alpine type catchments is 
an unexamined question. In these few published 
cases the lack or incompleteness of fundamental 
hydrological data is common. Modelling without 
data questions the reliability of distinct results, but 
may provide an estimated spectrum of the expected 
behaviour. To build a numerical model based on 
such information requires the model to be heavily 
simplified, robust, yet detailed enough to provide 
useful results for decision makers. Sensitivity 
analysis and ensemble modelling are the tools to 
compensate lower accuracy in case of model studies 
(Hegedűs et al., 2013).  

A great number of hydrological models are 
available nowadays with a wide range of data 
requirement, calculation capacity, accuracy and 
usability: empirical models (e.g. unit hydrograph 
method, regression equations), conceptual rainfall-
runoff models (e.g. NAM, HEC-HMS, HBV, 
SIMHYD, GAPI/TAPI), physically based models 
(e.g. SHE, TOPOG, DIWA) (Wagener et al., 2004, 
Götzinger & Bárdossy 2005, Van Leeuwen et al., 
2016, Rahim et al., 2012, Huang et al., 2005, Karim, 
et al., 2016, Bakonyi & Bartha 1988). The general 
objective of this paper is to test the applicability of 
the MIKE 11 NAM rainfall-runoff model on a 
Salzkammergut watershed in Austria. Our 
hypothesis is that to simulate the response of the 
catchment with a conceptual method precipitation, 
temperature and evapotranspiration data is enough 
and the calibration of free variables is possible 
towards the observed outflow. The analysis will 
show whether the complexity of the model and the 
temporal resolution of the data have direct and 
proportional effect on the model performance on 
such a small watershed. A secondary objective is to 
find an optimal strategy for the autocalibration 
procedure and compare its effectiveness with the 
results of manual calibration. The model 
performance (Nash & Sutcliffe 1970) is measured 
with the coefficient of determination (R2) throughout 
the paper and with the Nash-Sutcliffe efficiency 
(NSE) for the final results, and NSE > 80% is 
considered a satisfactory result (Moriasi et al., 
2007). Obtaining a well performing rainfall-runoff 
model using just a minimal set of data and the 
simplest structure would serve as a useful tool for 
operative runoff estimation. In a flood forecasting 
system, where the number of delineated 
subcatchments is significant, it is an obvious 
advantage to a have fast calculating, easily 
adjustable runoff model. The best strategy of 
autocalibration serves the purpose of labour-free 

calibration of multiple catchments, where the 
method of similar catchments is widely used despite 
its substantial simplifications. 

 
2 METHODS 
 
2.1. Case study area 
 
The Mondsee catchment is one of the “Long 

Term” Ecosystem Research (LTER) sites belonging to 
its international research framework ILTERNET, it is 
located in the Salzkammergut region of Upper-Austria, 
between the Central and Lower Eastern Alps 
separating the Alpine and pre-Alpine regions, the 
sedimentary and intrusive ranges (Mirtl et al., 2015). 
The area of the catchment is 248 km2 and is 
characterised by a very dense river and stream system 
of about 2 km/km2, embedded in steep slopes and 
heavy soils causing fast surface runoff (Klug 2010, 
Klug & Jenewein 2010). Numerous studies on the 
hydrology and meteorology of the catchment have 
been published, among them Swierczynski et al., 2013, 
Klug & Oana 2015, and Lauterbach et al., 2011. The 
GIS information of the catchment and all the data used 
for the modelling were exported from the EHYD 
hydrographic archive database of the hydrographic 
service of Austria and provided by ZAMG. 

The dataset used for the calculations includes 
precipitation time series from 1961 to 2013 at 
Mondsee (no. 105346 at 13°22’-47°51’, operated by 
ZAMG) station, temperature time series from 2000 
to 2013 also from Mondsee station. The discharge 
time series was observed at station See am Mondsee 
(no. 206185, 13°27’-47°48, operated by HD-
Oberösterreich) from 1977 to 2012. 

 
2.2. The applied model  
 
For the numerical modelling of the Mondsee 

Catchment we selected the lumped NAM rainfall-
runoff model. The model is integrated into the 
MIKE 11 1-dimensional hydrodynamic model 
developed by DHI. It also functions as a standalone 
hydrological model, which has been used globally 
(Doulgeris et al., 2012, Anderson et al., 2008, 
Makungo et al., 2010, Keskin et al., 2007, 
Thompson et al., 2004, Odiyo et al. 2012, Ostojski 
2013, Hafezparast et al., 2013, Singh et al., 2014, 
Ahmed 2014, Amir et al., 2013), and compared to 
other rainfall-runoff models, its advantages and 
drawbacks have been pointed out in several studies 
(Vansteenkiste et al., 2014, Lidén & Harlin 2000). 

Having set the target to calculate the total 
outflow at the watershed’s outlet section, a lumped 
model has been chosen. A conceptual model is able 
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to simulate the behaviour of the catchment, describe 
the processes even on a long simulation period 
(Madsen 2000). The NAM model uses a relatively 
simple operational scheme (Fig. 1). The vertical 
layers of the catchment are separated into storages: 
snow storage, surface storage, lower zone storage 
and the groundwater storage. The essential inputs 
include precipitation rate and evapotranspiration, but 
further data may also be necessary such as 
temperature, irrigation data, etc. The water is 
conveyed by the simplified representation of 
physical processes: snow accumulation, snow 
melting, interception, evaporation, transpiration, 
capillary fluxes. The output of the model is the total 
runoff consisting of three main components. These 
components are the overland flow, interflow and 
baseflow. A NAM model has multiple parameters 
where the number is dependent on the processes 
included, such as irrigation, vertical zoning, and 
groundwater pumping.  

 

 
Figure 1. NAM model schematics (DHI 2014) 

 
2.3. Calculating potential 
evapotranspiration  

 
The NAM model requires evapotranspiration 

data for the simulation. The general empirical 
evapotranspiration calculation methods are 
erroneous and are specialised for a certain type of 
study area. To simplify this data generation and not 
to bias the simulations with additional calculations 
not considering the same modelling accuracy, we 
used a monthly averaged mean after Thornthwaite 
(1948) to obtain annual evapotranspiration data. The 
method correlates potential evapotranspiration with 
only mean monthly temperature, and it lacks 
variables like wind speed, humidity, and radiation. 
The method was derived from the water budget of 
natural watersheds and from controlled experiments 
in the humid Northeastern United States, that are of 
similar characteristics as our selected case study 
area. The unadjusted potential evapotranspiration in 

millimetres is calculated with equation 1: 
 

𝑃𝐸𝑇 =  16 � 𝐿
12
� �𝑁

30
� (10𝑇𝑎

𝐼
)𝑎    ,                    (1)  

 

where Ta = average monthly mean temperature, N 
= number of days in the month, L = average length 
of daytime in the month, where I = annual heat index 
according to equation 2: 

 

𝐼 =  ∑(𝑇𝑎
5

)1.514   ,                     (2)  
 

where Ta = monthly mean temperature;  
These monthly values are then adjusted for 

possible hours of sunlight and the number of days in 
the actual month. However, the method tends to 
over- and underestimate potential evapotranspiration 
(Chen et al., 2005, Cruff & Thompson, 1967) as it 
does not incorporate regional and seasonal 
characteristics, it is still widely used for a general 
assumption (Ács et al., 2011, Calvo 1986). The 
result of the calculation based on the known 
temperature values at Mondsee is visible on the 
figure below (Fig. 2).  

 

 
Figure 2. Potential evapotranspiration calculated with 

Thornthwaite method at Mondsee 
 

2.4. Snowmelt 
 

Snow accumulation and snow melting is 
incorporated in the NAM model by an integrated 
optional component called the snow module (DHI 
2014). The accumulation and melting of snow is 
based on the degree-day approach, confirmed by 
several investigations (e.g. U.S. Army Corps of 
Engineers 1956), calculated by equation 3: 

 

𝑄𝑆 =  �𝐶𝑠𝑛𝑜𝑤
(𝑇 − 𝑇0)𝑓𝑜𝑟 𝑇 > 𝑇0
0 𝑓𝑜𝑟 𝑇 ≤  𝑇0

 ,         (3) 

where QS is the snowmelt, Csnow = degree-day 
coefficient, T is temperature and T0 is the base 
temperature. The details of the calculation are 
explained in chapter 3.2.3. 

The melt water is retained in the snow storage 
until the total amount exceeds the water retention 
capacity of the snow storage. The excess melt water is 
than routed to the surface storage of the NAM model. 
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Sublimation from snow is neglected. Altitude based 
distribution of the snowmelt model is also 
incorporated, which allows the elevation zoning of 
temperatures and precipitations and introduces 
individual snow storages separately for each altitude 
zone. The simple degree-day approach can be 
extended by using a seasonal variation of the degree-
day coefficient, the melting effect of absorbed short 
wave radiation and the heat contribution from rainfall. 

In case of unmonitored catchments, the above 
described approach could be sufficient for a general 
approximation of snowmelt contribution to the 
overall runoff, but if more detailed data is available 
(e.g. snow covered area, snow depth) there are more 
sophisticated models to simulate this process, as 
case studies confirm for example on Tamor and 
Aksu river basins (Rulin 2008, Panday 2013).  

 
2.5. Model calibration procedure 

 
A bare model is unable to provide the right 

answer using input data unless its free variables are 
calibrated. The calibration process is generally a trial 
and error task, but a great number of hydrological and 
hydraulic models (Dung et al., 2011) incorporate some 
kind of automatic calibration method with both 
disadvantages and advantages that have to be realized.  

Since most of the values in NAM are not 
based on the physiographic, climatic and soil 
physical characteristics of the catchment, but are of 
empirical and conceptual nature, the calibration must 
be performed using time series of hydrological 
observations (DHI 2014). Thus, the numerical 
performance can be measured with the coefficient of 
determination or the Nash-Sutcliffe coefficient 
(NSE) (Nash & Sutcliffe 1970). We used the 
coefficient of determination as it is a default output 
of the NAM model. It is indicated with R2 and 
calculated with equation 4: 

 

𝑅2 = 1 − ∑ �𝑄𝑜𝑏𝑠,𝑖−𝑄𝑠𝑖𝑚,𝑖�
2𝑁

𝑖=1

∑ �𝑄𝑜𝑏𝑠,𝑖−𝑄⃐�𝑜𝑏𝑠�
2𝑁

𝑖=1
 ,            (4) 

 

where Qsim,i is the simulated discharge at time 
i, Qobs,i is the corresponding observed discharge, and 
 𝑄⃐���𝑜𝑏𝑠 is the average observed discharge. A perfect 
match corresponds R2 = 1 (DHI 2014). The 
coefficient of determination can also be interpreted 
as an explained variance in percentiles. 

The automatic calibration of the NAM model 
is based on multiple objectives. Using the symbols 
of equation (4) and by identifying the set of model 
parameters to be calibrated with θ, and the number 
of time steps in the calibration period with N, these 
are based on equation 5: 

Overall volume error is: 

𝐹1(𝜃) = �1
𝑁
∑ �𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖(𝜃)�𝑁
𝑖=1 �     (5) 

 

Overall RMSE is: 
 

𝐹2(𝜃) = �1
𝑁
∑ �𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖(𝜃)�2𝑁
𝑖=1 �

1/2
 (6) 

 

The coefficient of determination in equation 
(4) is a transformed and normalised measure of the 
overall RMSE (normalised with respect to the 
variance of the observed hydrograph). Thus, 
minimisation of Eq. (6) corresponds to maximising 
R2 (DHI 2014). 

Average RMSE of peak flow events: 
 

𝐹3(𝜃) =
1
𝑀𝑝
∑ � 1

𝑛𝑗
∑ �𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖(𝜃)�2𝑛𝑗
𝑖=1 �

1/2𝑀𝑝
𝑗=1   (7) 

 

where Mp is the number of peak flow events in 
the calibration period, and nj is the number of time 
steps in event j. Peak flow events are defined as 
periods where the observed discharge is above a 
given (user-specified) threshold level. 

Average RMSE of low flow events: 
 

𝐹4(𝜃) =
1
𝑀𝑙
∑ � 1

𝑛𝑗
∑ �𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖(𝜃)�2𝑛𝑗
𝑖=1 �

1/2
𝑀𝑙
𝑗=1   (8) 

 

where Ml is the number of low flow events, as 
Mp is in Eq. (7). 

A general form of the multi-objective 
optimization challenge can be formalised as of 
equation 9: 

 

𝑚𝑖𝑛{𝐹1(𝜃),  𝐹2(𝜃),𝐹3(𝜃),𝐹4(𝜃)} ,𝜃 𝜖 Θ    (9) 
 

where Θ is the feasible parameter space for 𝜃. 
This parameter space is a hypercube given by the 
physically and mathematically defined lower and 
upper limits of parameters. The detailed solution of 
Eq. (9) can be found in model’s references manual 
(DHI 2014) and the implementation of this method 
is demonstrated in Madsen (2000). 

Generally, the automatic calibration module 
of the NAM model requires a more systematic 
approach than a simple multi-objective process, and 
can be adjusted with manual calibration (Giang & 
Phuong 2010), although there are stronger 
algorithms reported with superior results 
(Zakermoshfegh et al., 2008). 

 
3. RESULTS 
 
3.1. Uncalibrated model on daily data 
 
The model was run on the entire watershed for 

the simulation period from 1977 to 2011. During the 
first simulation, we did not define any other values 
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than the input time series of precipitation and 
potential evapotranspiration, so we let the model 
calculate the following default parameters:  

− Umax: maximum capacity of surface 
storage 

− Lmax: maximum capacity of root-zone 
storage 

− CQOF: overland flow coefficient 
− CKIF: interflow coefficient 
− TOF: root-zone threshold for overland 

flow 
− TIF: root-zone threshold for interflow 
− TG: root-zone threshold for groundwater 

interception 
− CKBF: base flow time coefficient 
− CK1,2: overland flow time coefficient 

In this first step two types of results were 
obtained. The first group of results include the main 
outputs including total outflow and runoff, the 
second group comprises partial results showing the 
current level of storages and exchange among them 

for each time step visible on the NAM model 
schematics figure (Fig. 1). The first group of results 
were then compared with the measured data, as they 
serve as the basis of calibration (Fig. 3 and Fig. 4).  

Figure 3 shows a representative period of 2 
years (1994-1995) from the simulation period (1972-
2006), while Figure 4 shows the entire simulation 
period. The explained variance of the runoff is 
42.7% in the uncalibrated case, and the total error of 
the water balance (difference of the observed and 
simulated accumulated runoff values at end of the 
simulation period) is 14.8%. We resume from Figure 
3 that the low flow discharges are well approximated 
by the model, but the high flow events are incorrect. 

 
3.2. Autocalibrated model on daily data 
 
NAM provides an autocalibration algorithm 

besides manual calibration (see chapter 2.5.); 
therefore, the parameters can be adjusted based on 
target functions. 

Figure 3. Observed and simulated runoff (uncalibrated) 
 

 
Figure 4. Measured and calculated accumulated runoff (uncalibrated) 



240 

Such a target function could be the minimal 
error of water balance or the RMSE of runoff 
(Madsen et al., 2001). Our experience during the 
modelling was that the best method of 
autocalibration is to do it systematically, defining 
only one or two target functions simultaneously. For 
this simulation, we used the results of the previous 
simulation as initial condition.  

We selected the water balance error 
minimization as the first target function. As a result of 
the autocalibration water balance error decreased from 
14.8% to 6.7%, as can be observed in Figure 5. Both 
the observed and the simulated cumulative runoff 
series are increasing in parallel except two events, in 
the first third of years 2005 and 2006. The reason is 
probably inconsistency between the calibration 
discharges and the input precipitation data. The fitting 
of the observed and calculated runoff values is worse 
compared to the initial state, the explained variance of 
the runoff is 5.8%. This behaviour of the 
autocalibration routines of the NAM model has already 
been documented by Madsen (2000).  

The target function of the next calibration step 
was the minimization of the RMSE of runoff values, 
aiming to achieve a better fitting of the observed and 
simulated runoff series (Fig. 7). 

The highest value of explained variance was 
55.2% and the water balance error was 15.9% after a 
series of autocalibration attempts. The simulations 
were made systematically focusing firstly on the 
RMSE, then the fitting of discharges below 5 and 10 
m3/s, finally above 30, 20 and 10 m3/s. 

 
3.3. Introduction of snow calculations to the 
calibrated model 

 
Some early spring floods in 2005 and 2006 

remained invisible in the model runs (Fig. 7). The 
model did not accumulate the precipitation of the 
winter season in snow to release it during the snowmelt 
of the spring season as surplus runoff, but provided 
immediate flood response to each rainfall events. In 
order to overcome this challenge, the snow module of 
the NAM model was applied (see chapter 2.4). 

 

 
Figure 5. Measured and calculated runoff (after autocalibration with the target function of water balance error minimisation) 

Figure 6. Measured and calculated runoff (after autocalibration with the target function of water balance error 
minimisation). 
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Figure 7. Measured and calculated runoff (after systematic autocalibration with the target function of higher variance). 

 
To introduce the contribution of the snow in the 

model, it requires additional temperature time series as 
input data. Since the temperature has an obvious role in 
the formation of floods from snowmelt, we could not 
use the mean monthly temperatures as we used for the 
evaporation estimation, thus the daily mean 
temperatures were applied. We selected the period of 
2004 to 2008 for further calibration. Based on manual 
calibration we defined the base temperature that 
separates rainfall from solid precipitation (snow). The 
degree-day coefficient defines decreasing snow depth 
based on the one-degree Celsius increment above the 
base temperature in a day. The seasonal variation of 
this parameter increased the model performance 
significantly (Fig. 8). 

Having incorporated the snow module and 
recalibrated the model, the explained variance of the 
simulation period is of 81% accuracy. Thus, the model 

is not capable of simulating the remaining variability of 
19% with the current structure and set of parameters. 

The overall water balance error as shown in 
Figure 9 is 2.8%, indicating a 3.9% of improvement 
compared to the simulation results without the snow 
module but using the target function of water balance 
error with the minimization procedure. The snow 
module significantly increased the accuracy of the 
output results and their correspondence with the 
observed data. 

The model during low flow periods is accurate, 
but has a slightly varying performance during floods. 
In case of shorter (app. below 10 days) flood events, 
caused by intense rainfalls, the input time series of 
daily precipitation data is not descriptive enough to 
allow the model to catch such fast flood events and 
thus provides much longer floods in time with a lower 
peak discharge, resulting in a significant phase error.  

 
Figure 8. Measured and calculated runoff (after snow module introduction and calibration)
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Figure 9. Measured and calculated accumulated runoff (after snow module introduction and calibration) 

 
In case of longer floods caused by a 

continuously wetting catchment and longer rainfall 
events, the model is able to estimate a more accurate 
overall runoff. Any additional calibration attempt 
targeting these errors results in significant water 
balance error. 

 
3.4. Recalibration on 6-hour step data 

 
A serious limit of better fitting of the observed 

and simulated runoffs is the temporal resolution of 
the input data, especially of precipitation. Long and 
low-intensity rainfall results in continuous 
infiltration and slow downward propagation of the 
wetting front in the soil, while a short intense 
rainfall may cause immediate flooding triggered by 
significant overland runoff, and partitioning of 
rainfall into runoff rather than infiltration into the 
soil. As the rainfall data is available in 6-hour 
intervals, we changed the input of the model to 
assess its response to higher temporal resolutions. 
As the temporal resolution of precipitation has effect 

mainly on short-term water dynamics, the 
refinement of the model was focused mainly on 
surface related components such as overland flow 
and interflow routing, snow calculations, etc. 
Starting with the snow module the seasonal variation 
of the degree-day coefficient had to be modified to 
have a much stronger snow accumulation during 
winter period, and the melting effect of rain was 
introduced into the model to obtain a better match 
between the measured and simulated flood waves. 

To assess the performance of the model with 
6-hour precipitation totals as input parameters, new 
model simulations were developed for the period of 
May 2004 to September 2005, when the new 
precipitation time series was continuous enough for 
comparison. The variance increased from 81% to 
86.3%, improving model accuracy about 5%. 
However, the simulation shows a worse performance 
for low flow periods, resulting in a significant 
change in water balance, therefore a manual 
correction of the groundwater parameters was 
required.  

 
Figure 10. Measured and calculated runoff (after recalibration based on 6-hour precipitation data). 
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Table 1. Overview of surface and groundwater model parameters 
 Umax Lmax CQOF CKIF CK1,2 TOF TIF TG CKBF Carea 

v1 10 300 0.92 200 100 3.42E-04 8.33E-05 1.26E-04 4000 1 

v2 10 298 0.84 200 100 1.04E-05 8.81E-05 1.27E-05 1101 2 

 
Figure 11. Comparison between measured and calculated runoff 

 

 
Figure 12. Verification: measured and calculated accumulated runoff. 

 
The final water balance error was 7.8%, 

resulting in a decreasing performance from the 
previous model output based on daily rainfall. With 
further manual adjustments of the long-term 
parameters targeting the water balance, better results 
were obtained, but only besides disadvantageous 
changes of the variance (see also chapter 3.2). 

 
3.5 Model verification 
 
Verification on an independent set of input 

data is the justification of the model performance. 
The first scenario for verification (v1) was the full 
model setup including the extended snow module 

ran on a daily precipitation input. The second 
scenario (v2) was the same setup but recalibrated 
based on 6-hour step input precipitation data. The 
model parameters are listed in Table 1. 

Recalibration slightly effected the surface 
runoff parameters and heavily effected the 
groundwater part. The reason is most probably the 
different nature of the input time series used for the 
simulations, especially their result during low-flow 
periods where such a slow runoff component as base 
flow has a major part. 

The results of verification are shown in Figure 
11 and Figure 12. By analysing the statistics, the 
explained variance of v1 was 76.1% (81% on 
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calibration period) while 70% was observed for v2 
(86.3% on calibration period). It means 4.9% drop in 
case v1 and 16.3% drop for v2. The water balance 
error is 1.8% for v1 and -13% for v2, which 
confirms the tendency shown by the explained 
variance values. However, v2 proved to be better 
calibrated against the RMSE and showed close 
fitting of the observed and simulated runoff series on 
the calibration period, but the performance on the 
verification time series is worse compared to v1. V1 
resulted in slightly worse explained variance 
compared to the calibration process, but achieved a 
slightly better result on the water balance. 

 
4. DISCUSSION AND CONCLUSION 

 
To increase model performance, further 

calibration attempts were made, but none of them 
resulted in a generally acceptable outcome. When 
the model was optimized for distinct floods or high-
flow periods that provides reasonable results locally, 
but we observed negative effect on the flow of the 
entire watershed. A significant flood event was 
observed in March 2005, generated by snowmelt and 
30 to 40 mm of precipitation in a 24-hour period, 
while the daily average temperature was gradually 
increasing (Fig. 13). The flood wave peaked around 
47.7 m3/s and lasted for approximately 20 days. The 
solid line on Figure 13 represents the observed 
runoff, the dashed line the simulated runoff of the 
globally accepted calibration, while the dotted line 
shows the results of the targeted calibration of this 
flood event. Prior to recalibration, the RMSE of the 
simulation, calculated for this event was 7.1 m3/s, 
while it decreased to 4.2 m3/s after the recalibration. 
This means a better simulation of the flood wave, 
which is also visible on the graph below (Fig. 13). 
Nonetheless, this calibration resulted in a much 
worse model performance for floods in April, May 

and June of 2005. This instance is a typical case of 
an overlearning model, which indicates better local 
model performance that leads to poorer model 
performance globally. 

By achieving NSE values higher than 86%, 
our results are considered satisfactory, therefore the 
hypothesis of the study is considered to be justified. 
Moreover, the secondary objective of autocalibration 
strategy is also fulfilled. Makungo et al., (2010) 
reached NSE=0.74 on South African catchments 
slightly under 100 km2 with parameter 
regionalization, however the underestimation of 
peak discharges was a major issue in that case. 
Keskin et al., (2007) applied the model to a 
catchment of similar size (257.8 km2) in north-
eastern Turkey where snow accumulation and melt 
also have a major importance similarly to Alpine 
catchments and reached NSE=0.7 for high flow 
events and slightly lower values for low flow. 
Ostojski (2013) simulated multiple catchments in 
Poland ranging from 1500 km2 to 15000 km2 in area 
and obtained NSE values between 0.5 and 0.8. 
Hafezparast et al., (2013) reached NSE=0.74 while 
modelling a catchment in Iran of 2470 km2. Reading 
through these previously published cases no Alpine 
case study about NAM model could be found, 
however some of the analysed catchments had 
similar characteristics to the Mondsee watershed. 
Comparing our results with these case studies, 
superior model performance was achieved even 
under the validation scenario, which is a result of 
targeted auto calibration strategy and simplified, 
goal oriented model structure. 

Based on the results of the current study we 
believe that the MIKE 11 NAM model is applicable 
for the reconstruction of long-period flow time series 
with autocalibration and manual adjustment of 
calibration parameters and their sensitivity analysis. 

 
Figure 13. Measured and calculated runoff (targeted calibration to the flood in March 2005). 
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Table 2. Summary of the performance of the different model scenarios 
 Uncalibrated Autocalibration 

(water balance) 
Systematic 

autocalibration 
Snow module 
introduction 

6h 
precipitation 

input 
WBE* 14.8% 6.7% 15.9% 2.8% 7.8% 
R2 42.7% 5.8% 55.2% 81% 86.3% 

* water balance error at the end of the simulated period 
 

This conceptual model requires relatively 
little input data; however, the calibration is time 
demanding and the number of calibration parameters 
is high. In conclusion, the NAM model is applicable 
for Alpine/pre-Alpine, watersheds between rugger 
(south) and smoother (north) topography to estimate 
total runoff. Such modelling is particularly important 
on poorly monitored catchments where data have 
limited availability. The model can be further 
refined with specific calibration on distinct type of 
events, and detailed sensitivity analysis of the free 
variables in correlation with physical values. The 
operative application of this model as a numerical 
formulation in an ensemble forecasting system with 
changing initial conditions could be useful in flash 
flood hazard prevention and protection. 

The MIKE 11 NAM model is robust, well-
constructed system, with a clear and transparent 
background of relations. The MIKE by DHI 
software package is strong in both input data 
preparation and output management. Moreover, 
NAM is an integrated part of MIKE 11 model with 
advanced hydrodynamic, water quality, sediment 
transport capabilities. After the studies presented in 
this scientific paper and by reading through 
corresponding papers NAM proves to be a well-
structured, regionally independent model. There are 
of course superior overall models or superior 
algorithms for distinct tasks such as the multi-
objective automatic calibration, or the extension of 
snow module with additional measured data. 

When snow accumulation was involved, the 
long-term model performance significantly 
improved for the estimation of runoff conditions for 
the Mondsee Catchment. However only a moderate 
model performance increase was found when input 
precipitation was decreased from daily precipitation 
totals to a 6-hour temporal resolution. Consequently, 
larger computational efforts, required to handle a 
four times larger database of input data, were 
essential to run the model. The accuracy of the 
output data, however, did not increase significantly 
with larger input data, thus we confirm that in the 
presented study case decreasing rainfall temporal 
resolution from 24-hor to 6-hour did not provide 
significant model performance increment, and 
disadvantages (e.g. processing time and data 

handling) outperform the benefits gained from the 6-
hour model runs (Table 2).  
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